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ABSTRACT

In recent years broadband signal aquisition by sensor arrays, e.g., for
speech and audio signals in a hands-free scenario, has become a pop-
ular research field in order to separate certain desired source signals
from competing or interfering source signals ((blind) source separa-
tion or interference cancellation) and to possibly dereverberate them
(blind deconvolution). In various practical scenarios, some or even
all interfering source signals may be directly accessible and/or some
side information on the propagation path is known. In these cases
we can tackle the separation problem by supervised adaptation algo-
rithms, e.g., the popular LMS- or RLS-type algorithms, rather than
the more involved blind adaptation algorithms. In contrast, for blind
estimation, such as in the blind source separation (BSS) scenario
where both the propagation paths and the original source signals
are unknown, the method of independent component analysis (ICA)
is typically applied. Traditionally, the ICA method and supervised
adaptation algorithms have been treated as different research areas.
In this paper, we establish a conceptually simple, yet fundamental
relation between these two worlds. This is made possible using the
previously introduced generic broadband adaptive filtering frame-
work, called TRINICON. As we will demonstrate, not only both the
well-known blind and supervised adaptive filtering algorithms turn
out as special cases of this generic framework, but we also gain vari-
ous new insights and synergy effects for the development of new and
improved adaptation algorithms.

Index Terms— adaptive signal processing, separation, echo sup-
pression, MIMO systems, robustness

1. INTRODUCTION: ADAPTIVE MIMO FILTERING AND
IDEAL SIGNAL SEPARATION SOLUTION

In broadband signal aquisition by sensor arrays, such as in hands-
free speech communication scenarios, the original source signals
sq(n), q = 1, . . . , Q are filtered by a linear multiple input and mul-
tiple output (MIMO) system (e.g., the reverberant room) before they
are captured as sensor signals xp(n), p = 1, . . . , P . In this pa-
per, we describe this MIMO mixing system by length-M FIR filters,
where hqp,κ, κ = 0, . . . ,M − 1 denote the coefficients of the FIR
filter model from the q-th source signal sq(n) to the p-th sensor sig-
nal xp(n) according to Fig. 1. Moreover, we assume throughout this
paper that Q ≤ P . According to a certain optimization criterion,
we are interested in finding a corresponding length-L FIR demixing
system with coefficients wpq,κ by adaptive signal processing. This
yields the output signals yq(n). As a compact formulation of the set
of demixing filter coefficients and mixing filter coefficients we form
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Fig. 1. General setup for MIMO signal processing.
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and the corresponding QM × P mixing coefficient matrix Ȟ, re-
spectively, where

hqp = [hqp,0, . . . , hqp,M−1]
T , (2)

wpq = [wpq,0, . . . , wpq,L−1]
T (3)

denote the coefficient vectors of the FIR subfilters of the MIMO sys-
tems, and superscript T denotes transposition of a vector or a matrix.
The downwards pointing hat symbol on top of W in (1) serves to dis-
tinguish this condensed matrix from the corresponding larger matrix
structure W as introduced below in Sect. 2. The rigorous distinction
between these different matrix structures is also an essential aspect
of the general TRINICON framework, as shown later.

In this paper, we focus on signal separation and system iden-
tification problems. If both the propagation paths and the original
source signals in Fig. 1 are unknown, the demixing system has to
be estimated by blind source separation (BSS) for which the method
of independent component analysis (ICA) is typically applied [1].
In other practical scenarios, in which some or even all interfering
source signals are directly accessible and/or some side information
on the propagation path is known, we can tackle the separation prob-
lem by supervised adaptation algorithms, such as the popular least-
mean-square (LMS)- or the recursive least-squares (RLS)-type algo-
rithms [2].

The ideal MIMO separation filters W̌ideal,sep were derived and
discussed in detail in [3] for an arbitrary number of sources and
sensors. In this paper we only need to consider the special case
Q = P = 2. Then, the ideal separating filter matrix W̌ideal,sep
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reads [3]

W̌ideal,sep =

»
h22 −h12

−h21 h11

– »
α1 0
0 α2

–
, (4)

where due to the scaling ambiguity (in blind problems) each column
is multiplied by an unknown scalar αq .

For L = Lopt,sep = M , this ideal separation solution corre-
sponds to a MIMO system identification up to an arbitrary scalar
constant [3] (independently of the adaptation method and the pos-
sible prior knowledge). This important link was also successfully
exploited to obtain practical schemes for blind system identification
and multiple source localization [3].

2. REVIEW OF TRINICON FOR THE CASE OF
SEPARATION PROBLEMS

In this section we give a brief overview of the essential elements of
TRINICON (’TRIple-N ICA for CONvolutive mixtures’), a generic
concept for broadband adaptive MIMO filtering [4, 5, 6, 7]. Thereby,
we restrict the presentation here to the case of separation and identi-
fication problems and to simple Euclidean gradient-based coefficient
updates in the time domain.

Various approaches exist to estimate the demixing matrix W by
utilizing the following source signal properties [1] which were all
combined in TRINICON as a versatile framework:
(i) Nongaussianity is exploited by using higher-order statistics for
ICA. The minimization of the mutual information (MMI) among the
output channels can be regarded as the most general approach to
separation problems [1].
(ii) Nonwhiteness is exploited by simultaneous minimization of out-
put cross-relations over multiple time-lags. We therefore consider
multivariate pdfs, i.e., ‘densities including D time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization of
output cross-relations at different time-instants. We assume ergod-
icity within blocks of length N so that the ensemble average is re-
placed by time averages over these blocks.

Throughout this section, we present the framework for Q = P
without loss of generality. In practice, the current number of simulta-
neously active sources is allowed to vary throughout the application
and only the condition Q ≤ P has to be fulfilled.

2.1. OPTIMIZATION CRITERION

To introduce an algorithm for broadband processing of convolutive
mixtures, we first formulate the convolution of the FIR demixing
system of length L in the following matrix form [7]:

y(n) = WTx(n), (5)

where n denotes the time index, and

x(n) = [xT
1 (n), . . . ,xT

P (n)]T, (6)

y(n) = [yT
1 (n), . . . ,yT

P (n)]T, (7)

xp(n) = [xp(n), . . . , xp(n− 2L+ 1)]T, (8)

yq(n) = [yq(n), . . . , yq(n−D + 1)]T. (9)

The parameter D in (9), 1 ≤ D < L, denotes the number of time
lags taken into account to exploit the nonwhiteness of the source
signals as shown below. Wpq, p = 1, . . . , P , q = 1, . . . , P denote
2L×D Sylvester matrices that contain all coefficients of the respec-
tive filters in each column by successive shifting, i.e., the first col-
umn reads

ˆ
wT

pq , 0, . . . , 0
˜T

, the second column
ˆ
0,wT

pq, 0, . . . , 0
˜T

,

etc. Finally, the 2PL × PD matrix W combines all Sylvester ma-
trices Wpq analogously to (1).

Based on a generalization of Shannon’s mutual information, the
following cost function for signal separation was introduced in [4]
taking into account all three fundamental signal properties (i)-(iii):

J (m,W) = −
∞X

i=0

β(i,m)
1

N

·
iL+N−1X

j=iL

(
PX

p=1

log(p̂yp,D(yp(j))) − log(p̂y,PD(y(j)))

)
, (10)

where p̂yp,D(·) and p̂y,PD(·) are assumed or estimated multivariate
pdfs of dimensions D and PD, respectively. The index m denotes
the block time index for a block of N output samples shifted by L
samples relatively to the previous block. Furthermore, β is a window
function allowing for online, offline, or block-online algorithms [5].

2.2. GRADIENT-BASED COEFFICIENT UPDATE

For brevity and simplicity we concentrate in this paper on iterative
Euclidean gradient-based block-online coefficient updates which can
be written in the general form (according to our already performed
investigations, all results of this paper also carry over to other known
strategies, such as the natural gradient- or Newton-based updates)

W̌0(m) := W̌(m− 1), (11a)

W̌�(m) = W̌�−1(m) − µ∆W̌�(m), � = 1, . . . , �max,(11b)

W̌(m) := W̌�max(m), (11c)

where µ is a stepsize parameter, and the superscript index � de-
notes an iteration parameter to allow for multiple iterations (� =
1, . . . , �max) within each block m.

It can be shown that by taking the gradient of J (m) with respect
to the demixing filter matrix W̌(m), we obtain the following generic
gradient descent-based TRINICON update rule [4, 5]:

∆W̌�(m) =
1

N

∞X
i=0

β(i,m)SC
(

iL+N−1X
j=iL

h
x(j)ΦT

s,PD(y(j))

−V

„“
W�−1(m)

”T

V

«−1
#)

, (12a)

with the window matrix

V = Bdiag{Ṽ, . . . , Ṽ}, (12b)

Ṽ =
ˆ
ID×D, 0D×(2L−D)

˜T
, (12c)

and the multivariate score function (here for separation problems)

Φs,PD(y(j)) =
h
ΦT

y1,D(y1(j)), . . . ,Φ
T
yP ,D(yP (j))

iT

,

(12d)

Φyp,D(yp(j)) = −∂log p̂yp,D(yp(j))

∂yp(j)
. (12e)

The so-called Sylvester constraint SC{•} in (12a), formally in-
troduced in [5, 7], is an important building block linking the two dif-
ferent coefficient matrix formulations W (in the cost function) and
W̌ (in the optimization procedure). In [3] the explicit formulation
of the generic Sylvester constraint was derived. There it was shown
in a rigorous way that the generic Sylvester constraint corresponds
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to a channel-wise summation of el-
ements according to Fig. 2. Seem-
ingly different previously intro-
duced approaches in the literature
each correspond to certain approx-
imations of (SC) by neglecting
some of the elements within this
summation, as illustrated in [3].
Various links from the general
equations (12) to existing and also
to novel BSS algorithms have been
discussed, e.g., in [3, 5].
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+

+
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Fig. 2. Illustration of the
generic Sylvester constraint
(SC) after [3] for one channel.

3. TRINICON FOR SUPERVISED SYSTEM
IDENTIFICATION AND INTERFERENCE

CANCELLATION

So far in this paper, we have not made any explicit assumption whether
or not some of the source signals are directly accessible, i.e., if our
scenario is actually blind, supervised, or semi-blind. In fact, as we
will see in this section, the rigorous formulation of blind adaptive
filtering algorithms, as given by the TRINICON framework, may be
seen as a generic version, from which the supervised and semi-blind
versions may be deduced as special cases.

3.1. ILLUSTRATION BY SINGLE-CHANNEL ECHO CAN-
CELLATION FROM A SPECIALIZED MIXING MODEL

As a popular example for supervised adaptive filtering we consider
acoustic echo cancellation (AEC), e.g., [8], where all interfering
source signals are directly accessible. In the case of one unknown
source s1 = s and one hard-wired interfering source signal s2 = r,
we obtain the specialized mixing model shown on the left side of
Fig. 3. According to the right-hand side of (4) the corresponding
ideal demixing system taking into account this prior knowledge reads»

w11 w12

w21 w22

–
=

»
11 0
−h 11

–
. (13)

By comparing both sides of this equation, we immediately obtain the
corresponding demixing system structure shown on the right side in
Fig. 3. This is indeed the well-known single-channel AEC approach,
which in this way follows rigorously from the general equation (4)
together with the prior knowledge on the specialized mixing system.

s

r

x1

x2=: xref

h11=δ

h22=δ

h12=0

h21=h

w21

y1=: e

y2= r

Fig. 3. Single-channel echo cancellation: specialized mixing system
and corresponding specialized demixing system after (13).

3.2. CORRESPONDING SPECIAL CASE OF THE GRADIENT-
BASED TRINICON COEFFICIENT UPDATE

From the specialized form (13) of the demixing system follows that
we need to adapt only the lower left submatrix of W̌. All other
”subfilters” are already fixed to 11 and 0, respectively, according to
Fig. 3. In the following we study the implications of this specializa-
tion on the TRINICON-based coefficient update (12a).

We first consider the specialization of the second term of (12a)
using (12c) and a formulation of (13) in terms of Sylvester matrices:

V
“
WTV

”−1

=

=

»
Ṽ 0

0 Ṽ

– „»
ṼT −ĤT

0 ṼT

– »
Ṽ 0

0 Ṽ

–«−1

=

»
Ṽ 0

0 Ṽ

– »
ID×D −ĤTṼ

0 ID×D

–−1

=

»
Ṽ ṼĤTṼ

0 Ṽ

–
.

(14)

The last expression follows from the inversion of partitioned matri-
ces, e.g., [9]. The simple structure of (14) is a very important result
as it shows that in the supervised case, the lower left submatrix of
the second term of (12a) disappears without loss of generality.

Next, we note that the lower left submatrix of the first term
x(j)ΦT

s,PD(y(j)) in the coefficient update (12a) obviously reads
x2(j)Φ

T
y1,D(y1(j)). We now perform the following formal substi-

tutions in order to be in accordance with the literature on supervised
adaptive filtering, e.g., [2] (see also Fig. 3):

x2 → xref , y1 → e, w21 → −ĥ. (15)

Hence, the lower left submatrix of the first term is finally expressed
as xref(j)Φ

T
e,D(e(j)). Note that w21 → −ĥ is justified by (13).

Thus, we obtain the following lower left sub-matrix of the spe-
cialized gradient-based TRINICON update:

ĥ�(m) = ĥ�−1(m)

+
µ

N

∞X
i=0

β(i,m)SC
(

iL+N−1X
j=iL

xref(j)Φ
T
e,D(e(j))

)
. (16)

This is the triple-N-generalization of the Least-Mean-Squares (LMS)
algorithm from supervised adaptive filtering theory which in its well-
known original form exhibits the simple update [2]

ĥ(n) = ĥ(n− 1) + µ x̌ref(n)e(n), (17)

where the length-L vector x̌ref is a truncated version of xref (for-
mally, this truncation is obtained by (SC) for D = 1, see Fig. 2).
Although not shown in this paper due to space limitations, we may
analogously derive the corresponding generalizations of other super-
vised algorithms (NLMS, RLS, etc., which may essentially be seen
as special cases of a Newton-type update, e.g., [10]) by choosing a
Newton-type TRINICON coefficient update instead of the gradient
descent-type update.

From the generalized LMS update (16) above we can make the
following observations in comparison with the simple case (17): Due
to the generalized approach, we inherently obtain

• block online adaptation, possibly with multiple iterations � to
speed up the convergence [5].

• block averaging by N > 1 for more uniform convergence

• an error nonlinearity to take into account the nongaussianity
of the near-end signals (see discussion of the criterion above)

• multivariate error e to take into account the nonwhiteness of
the signals (see discussion of the criterion above)

Note that in various ways, the RLS algorithm can be seen as the opti-
mal supervised adaptation algorithm. However, the RLS is optimum
only in the case of Gaussian source signals at the near end (source s
in Fig. 3) and at the far end (source r in Fig. 3), and additionally, sta-
tionarity and whiteness at the near-end. The general update resulting
from TRINICON does not have these restrictions.
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3.3. INCORPORATING SPHERICALLY INVARIANT RAN-
DOM PROCESSES

In general, the estimation and handling of high-dimensional multi-
variate pdfs p̂e,D(e) is a very challenging task. In [4] we proposed
an efficient solution by assuming spherically invariant random pro-
cesses (SIRPs). The SIRP models are representative for a wide class
of stochastic processes. It has been shown that speech signals in
particular can very accurately be represented by SIRPs [11]. The
general model of a correlated SIRP of D-th order is given with a
properly chosen function fD(·) by [11]

p̂e,D(e) =
1p

πDdet(Ree)
fD

“
eTR−1

ee e
”

(18)

with theD×D correlation matrix Ree. As the best known example,
the multivariate Gaussian can be viewed as a special case of the class
of SIRPs, where fD(u) = 1√

2D
exp(− 1

2
u). To calculate the score

function for SIRPs in general, we employ the chain rule to (18)

−∂ log p̂e,D(e)

∂e
= −

∂p̂e,D(e)

∂e

p̂e,D(e)
=

»
− 1

fD(u)

∂fD(u)

∂u

–
| {z }

:=φe,D(u)

R−1
ee e,

(19)
where u = eTR−1

ee e. For convenience, we call the scalar function
φe,D(u) the SIRP score. A great advantage of SIRPs is that the
required function fD(u) can actually be derived analytically from
the corresponding univariate pdf [11]. Following the procedure in
[11], we exemplarily presented in [4] the optimum SIRP score for a
univariate Laplacian pdf.

Having derived the multivariate score function for the SIRP model
(19), we can now introduce it into the generalized LMS update (16)

ĥ�(m) = ĥ�−1(m) +
µ

N

∞X
i=0

β(i,m)

SC
(

iL+N−1X
j=iL

xref(j)e
T(j)R−1

ee (i)φe,D

“
eT(j)R−1

ee (i)e(j)
”)

.

(20)

3.4. RELATION TO SECOND-ORDER STATISTICS

The case of second-order statistics corresponds to a Gaussian model
for p̂e,D(e). We easily derive from (19) that in this case φe,D(u) =
1/2 so that (20) simplifies accordingly. In any case, both from the
resulting update equation and from (20), we see that the SIRP model
leads to an inherent normalization by the auto-correlation matrix.
This normalization in conjunction withN > 1 may be interpreted as
an inherent stepsize control and it also illustrates why BSS does not
require a separate double-talk detector (DTD), such as the traditional
AEC algorithms do [8]. Conversely, with a suitable estimation pro-
cedure for Ree the triple-N AEC algorithms may be applied without
additional double-talk detector.

Further approximating the near-end signal s (and e) as station-
ary white Gaussian noise with unit variance, i.e., e = e, Ree = 1,
finally leads to the traditional LMS (17). However, this stationar-
ity assumption brings about the necessity of an additional adaptation
control.

3.5. RELATION TO MULTIVARIATE ROBUST STATISTICS

By introducing a so-called scaling matrix S as a multivariate gener-
alization of the scaling factor in, e.g., [10, 12, 13], so that Ree =

SST, it is straightforward to equivalently formulate (20) as

ĥ�(m) = ĥ�−1(m) +
µ

N

∞X
i=0

β(i,m)

·SC
(

iL+N−1X
j=iL

xref(j)Ψ
T

`
S−1(i)e(j)

´
S−1(i)

)
, (21)

where Ψ(z) := zφe,D

“
zTz

”
, z = S−1e. (22)

This is the multivariate, i.e., triple-N-generalization of the well-known
robust LMS algorithm

ĥ(n) = ĥ(n− 1) +
µ

s(n)
x̌ref(n)ψ

„
e(n)

s(n)

«
(23)

after, e.g, [13] which is based on univariate statistics (i.e., white near-
end signal s) and designed to tolerate a certain amount of DTD fail-
ures [12]. But even though (23) is more robust during double talk,
a DTD is still necessary, while for a suitable parameter choice, (21)
does not necessarily require a separate DTD when accompanied with
a suitable estimation procedure of the scaling matrix S(m).

4. CONCLUSIONS

In this paper we established a systematic connection between the
blind and supervised adaptive filter theories. It turned out that this
opens up a great potential for various synergy effects and improved
algorithms. As a by-product, the new viewpoint developed in this
paper also leads to a simple information-theoretic interpretation of
supervised algorithms. We have already extended the unified treat-
ment of these algorithms further in several directions to be presented
in forthcoming publications, such as to the multichannel cases and
to semi-blind scenarios.
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[13] T. Gänsler, S.L. Gay, M.M. Sondhi, and J. Benesty, “Double-talk robust fast
converging algorithms for network echo cancellation,” IEEE Trans. Speech Audio
Processing, vol. 8, pp. 656-663, Nov. 2000.

20




