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ABSTRACT

System identification is the underlying mechanism of adaptive filter-
ing algorithms in the context of acoustic echo cancelation systems.
Multichannel system identification is subject to specific problems
emerging from spatio-temporal couplings in the input signals of the
adaptive filter. This paper presents a generic multichannel transform-
domain adaptive filtering approach. It is based upon a two-stage de-
coupling of the spatio-temporal couplings. The temporal decoupling
is yielded by a frequency domain transformation and the spatial de-
coupling by a further unitary transform. The presented approach re-
veals strong insights into the fundamental problems of multichannel
identification.

Index Terms— multichannel identification, adaptive filtering,
acoustic echo cancelation, condition number

1. INTRODUCTION

The problem of system identification plays an prominent role in the
development of, e. g., acoustic telecommunication systems. There,
a frequent application is acoustic echo cancelation (AEC). A full-
duplex communication scenario where AEC is applied is depicted in
Fig. 1. The goal of AEC is to cancel the acoustic echo for the far-
end, introduced by the couplings between the loudspeaker(s) and mi-
crophone(s) at the near-end. Multichannel systems play an increas-
ing role in teleconferencing applications where the communication
is enriched by spatial audio. In this paper we consider systems with
multiple speakers and one microphone at the near-end. The near-
end room can therefore characterized as multiple-input/single-output
(MISO) system. Multichannel system identification is a challenging
problem since it is typically ill-conditioned [1]. For instance, the far-
end microphone signals in Fig. 1 are produced by one source only
and linear filtering by the room acoustics. Hence, the microphone
signals are strongly coupled in such a scenario. In advanced adap-
tation schemes, at least two fundamental approaches exist to cope
with these couplings: (1) decoupling of the MISO convolution in
the near-end room and (2) decoupling of the input (microphone sig-
nal) covariance matrix. The first approach is applied in frequency-
domain adaptive filtering (FDAF), while the second one is applied
in transform-domain adaptive filtering (TDAF). While a number of
multichannel FDAF algorithms have been published, e. g. [2], simi-
lar algorithms for TDAF, originally introduced for the single channel
case [3], seem to be rare.
This paper presents a generic multichannel TDAF approach. It is
based upon a two-stage decoupling of the covariance matrix, where
the temporal decoupling is yielded by a frequency domain trans-
formation and the spatial decoupling by a spatial TDAF approach.
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Fig. 1. Block diagram of multichannel acoustic echo cancelation.

Moreover, the illustration of the results shows that this approach al-
lows strong insights into the fundamental problems of multichannel
identification. The presented results can be applied to generic MISO
identification problems.

2. MULTICHANNEL ACOUSTIC ECHO CANCELATION

In the block diagram of Fig. 1, the echo produced by the acous-
tic couplings between the P loudspeakers and the microphone at the
near-end room is canceled for the far-end by subtracting the estimate
ŷ(n) of the microphone signal from the actual microphone signal
y(n). The signal ŷ(n) is derived by filtering the loudspeaker signals
xp(n) with filters that model the acoustic paths hp(n) from the loud-
speakers to the microphones. These filters are derived adaptively
from the loudspeaker signals xp(n) and the error signal e(n) =
y(n) − ŷ(n). It will be assumed in the following that no double
talk is present.
The estimation of the acoustic paths hp(n) represents a multichan-
nel identification problem. Under certain reasonable assumptions,
adaptive algorithms aim to solve the following normal equation [1]

Rxx ĥ = rxy . (1)

The PL × 1 vector ĥ of estimated filter coefficients is given as

ĥp = [ĥp,0, ĥp,1, . . . , ĥp,L−1]
T , (2a)

ĥ = [ĥT
1 , ĥT

2 , . . . , ĥT
P ]T , (2b)

where ĥp,l denotes the l-th coefficient of the p-th channel and L the
filter length. The matrix Rxx denotes the covariance matrix of the
input signals x(n) and rxy the covariance vector between the input
x(n) and the microphone signal y(n). The PL × LP covariance



matrix Rxx is defined as

Rxx(n) = Ê{x(n)xT (n)} =









R11 R12 . . . R1P

R21 R22

...
...

. . .
...

RP1 . . . . . . RPP









,

(3)
where Ê{·} denotes a suitable approximation of the expectation op-
erator and n the time instant. The PL × 1 vector x of input signals
is given as

xp(n) = [xp(n), xp(n − 1), . . . , xp(n − L + 1)]T , (4a)

x(n) = [xT
1 ,xT

2 , . . . ,xT
P ]T . (4b)

The PL × 1 covariance vector rxy(n) = Ê{x(n) y(n)}. The
L × L sub-matrices Rpq = Ê{xp(n)xT

q (n)} of Rxx for p, q =
1, 2, . . . , P are assumed to be Toeplitz matrices.
In the recursive least squares (RLS) algorithm the covariance matrix
Rxx(n) is estimated as weighted sum [4]

Rxx(n) =
n∑

ξ=0

λn−ξ
x(ξ)xT (ξ) , (5)

where λ denotes the forgetting factor 0 < λ < 1. The coefficient
update for the RLS algorithm is given as

ĥ(n) = ĥ(n − 1) − R
−1
xx (n)x(n)e(n) . (6)

The solution of the normal equation (1) is subject to the condition-
ing of the covariance matrix Rxx. For typical application scenarios
temporal and spatial couplings are present in the signal vector x(n).
For the single-channel case, various techniques have been developed
in the past to cope with time-domain couplings [4]. One of these is
TDAF [3].

3. A TWO-STAGE APPROACH TO MULTICHANNEL TDAF

One goal of this paper is to develop a generic multichannel TDAF
approach. This is yielded by deriving a fully diagonalized represen-
tation of the covariance matrix Rxx in two consecutive steps: (1)
block-diagonalization by exploiting the Toeplitz/circulant structure
of Rpq and (2) full-diagonalization by applying a unitary transform.

3.1. Temporal decoupling

As first step towards the desired decoupling, we will follow the es-
tablished procedure of diagonalizing the sub-matrices Rpq of Rxx

using a discrete Fourier transformation (DFT) [4]. The sub-matrices
Rpq exhibit a Toeplitz structure. Toeplitz matrices are asymptoti-
cally equivalent to circulant matrices if their elements are absolutely
summable [5]. Hence, for large block lengths (L → ∞) the matrices
Rpq become equivalent to circulant matrices. Circulant matrices can
be diagonalized by a DFT. This can be formulated in matrix notation
as

Rxx = FSxx F
H , (7)

where F denotes a PL × LP block-diagonal matrix whose diag-
onal blocks are composed from L × L DFT matrices. Frequency
domain quantities are underlined. The elements of the (normal-
ized) DFT matrices are given as fnm = 1/

√
L · e−j2πnm/L for

(a) Rxx (b) Sxx (c) T
xx

Fig. 2. Illustration of covariance matrix and its representations.

n, m = 0, 1, . . . , L − 1. The block-matrix Sxx is composed from
the L × L diagonal matrices

Spq = diag{s(0)
pq , s(1)

pq , . . . , s(L−1)
pq } , (8)

where the elements s(ν)
pq for ν = 0, 1, . . . , L − 1 are given by the

DFT of the first column of Rpq . The frequency bin is denoted as
ν. Note, that Eq. (7) can be understood as a unitary transform of the
covariance matrix Rxx.
The achieved frequency domain representation of the covariance ma-
trix Rxx results only in a diagonalization of the blocks Rpq . This
is illustrated in Fig. 2. Figure 2(a) shows the typical structure of the
covariance matrix Rxx for P = 2. The transformation by the DFT
matrices results in the block-diagonalized matrix Sxx, as illustrated
by Fig. 2(b).
For a full diagonalization, the spatial couplings between the P chan-
nels will be exploited by applying a further unitary transform to the
covariance matrix.

3.2. Spatial decoupling

The diagonal matrices Spq are composed from the elements s(ν)
pq for

one particular combination of input signals. In order to achieve the
desired decoupling, the matrix Sxx is rearranged such that all com-
binations s(ν)

pq for one particular frequency bin ν are combined into

one P ×P matrix S
(ν). These blocks are then arranged on the main

diagonal of the matrix S̃xx. This operation can be described by a
suitably chosen permutation matrix A [6]

Sxx = AS̃xx A
T , (9)

where S̃xx is a LP × PL block-diagonal matrix composed from
the blocks S

(ν). The elements of S
(ν) exhibit the specific symmetry

property s(ν)
pq = (s(ν)

qp )∗ due to their interpretation as power spectral

densities. Consequently, the matrices S
(ν) are normal and the spec-

tral theorem can be applied. Hence, S
(ν) can be diagonalized by a

unitary transform [6]

S
(ν) = U

(ν)
T

(ν) (U(ν))H , (10)

where U
(ν) denotes a P × P unitary matrix composed from the

singular vectors of S
(ν). Spatially transformed quantities are under-

lined twice. The matrix T
(ν) denotes a diagonal matrix constructed

from the singular values t(ν)

η
of S

(ν)

T
(ν) = diag{t(ν)

1
, t(ν)

2
, · · · , t(ν)

P
} . (11)

Some of the eigenvalues might be zero (or in practice very small) if
the matrix S

(ν) exhibits a rank deficit.
Constructing a block-diagonal matrix U from the unitary matrices



U
(ν) for all ν and similarily a block-diagonal matrix T

xx
with the

diagonal matrices T
(ν) yields

S̃xx = UT
xx

U
H , (12)

where T
xx

is a diagonal matrix constructed from all the eigenvalues

t(ν)

η
. Substituting (9) and (12) into (7) yields the desired representa-

tion of the covariance matrix

Rxx = FAU T
xx

U
H
A

T
F

H (13)

in terms of the diagonal matrix T
xx

. Hence, the desired decoupling
of the covariance matrix has been achieved by a set of suitably cho-
sen unitary transforms. These transforms consist of two steps: (1)
temporal decoupling using a DFT based transformation and (2) a
spatial decoupling using a unitary transform. Figure 2 illustrates the
effect of these two transformations on the covariance matrix.

3.3. Multichannel TDAF

Introducing Eq. (13) into the normal equation (1) and exploiting the
unitarity of the transform matrices yields the transformed normal
equation

T
xx

U
H
A

T
F

H
ĥ

︸ ︷︷ ︸

ĥ

= U
H
A

T
F

H
rxy

︸ ︷︷ ︸

t
xy

, (14)

where ĥ and t
xy

denote the transformed vector of filter coefficients

ĥ and the transformed covariance vector rxy , respectively. Since
T

xx
is diagonal, the normal equation (1) has been decomposed by

the transformations into a series of scalar equations.
The application of the transformations will be illustrated briefly at
the example of the RLS algorithm. The coefficient update of the
multichannel TDAF approach can be derived straightforwardly by
introducing Eq. (13) into Eq. (6) as

ĥ(n) = ĥ(n − 1) − T
−1

xx
(n)UH

A
T
F

H
x(n)

︸ ︷︷ ︸

x(n)

e(n) , (15)

where x(n) denotes the transformed vector of input signals x(n).
The covariance matrix T

xx
(n) can be estimated from the trans-

formed input signals by introducing Eq. (13) into (5) and rearranging
the sum as

T
xx

(n) = λ T
xx

(n − 1) + x(n)xT (n) . (16)

Equations (15) and (16) reveal that the filter coefficients ĥ(n) can
be computed from the transformed input x(n) and error e(n) signal
if the transformation matrices are known. The temporal transforma-
tion F is given by the DFT matrix, and hence fixed. The required
spatial transformation U is composed from the eigenvectors of S

(ν),
and hence depends on the spatial properties of the far-end acoustics.
The eigenvectors can be computed from the covariance matrix Rxx

and hence from the input signals x(n). The computational com-
plexity for the eigenvector calculation can be quite high. However,
the block structure of the covariance matrix allows to decompose
the problem into a series of lower dimensional problems. Addition-
ally, the sparse structure of the transformed covariance matrix can be
exploited in practical implementations. This indicates that the com-
putation of the transformations is tractable in practice. Further, a
fixed transformation derived from analyzing the eigenvectors, like in
single-channel TDAF algorithms [3], might be a potential solution.

The solution of the normal equation (14) and the coefficient up-
date (15) require to invert the covariance matrix T

xx
(n). If the

eigenvalues t(ν)

η
are close to zero this will be subject to numerical

problems. Potential countermeasures are to perform a regularization
of the respective values or to discard the respective bins in the com-
putation of the filter update. For the single-channel case, the latter is
known as reduced rank TDAF. In practice, microphone noise and the
impulse response tail effect will limit the numerical problems [1].
Note that the inverse of the transformed covariance matrix, occurring
in Eq. (15), can be understood as the power normalization step typi-
cally applied in single channel LMS-based TDAF algorithms [3].

4. ILLUSTRATION

4.1. Conditioning and misalignment

It was already outlined in Section 2, that the computation of the fil-
ter coefficients essentially requires to invert the covariance matrix
Rxx. The condition number of this matrix is a measure how numer-
ically well-posed this inversion process is. If the condition number
is high, the problem is said to be ill-conditioned. Small variations
in the covariance matrix lead to large variations in the filter coeffi-
cients. The condition number of a matrix depends on the underlying
matrix norm. The Frobenius norm of R

1/2
xx has proven to be a good

measure in the context of adaptive filtering [7]. This section derives
the conditioning of the covariance matrix in terms of its transformed
representation. It will be assumed that Rxx has full rank for ease of
illustration.
The condition number κF{R1/2

xx } of R
1/2
xx is given as [6]

κF{R
1

2
xx} =

∥
∥
∥
∥
R

−
1

2
xx

∥
∥
∥
∥

F

∥
∥
∥
∥
R

1

2
xx

∥
∥
∥
∥

F

, (17)

where ‖·‖F denotes the Frobenius norm. The Frobenius norm of

R
1/2
xx can be expressed in terms of the following matrix traces

∥
∥
∥
∥
R

1

2
xx

∥
∥
∥
∥

F

= tr{Rxx}
1

2 = tr{T
xx
} 1

2 , (18)

where tr{·} denotes the trace of a matrix. Note that the invariance of
the trace operator with respect to unitary transformations has been
exploited to yield the last equality. Expressing the Frobenius norm
of R

−1/2
xx in a similar fashion, and introducing both into Eq. (17)

yields

κ2
F{R

1

2

xx} = σ2
x

P∑

η=1

L−1∑

ν=0

(t(ν)

η
)−1 , (19)

with σ2
x =

∑P
η=1

∑L−1
ν=0 t(ν)

η
being the variance of the input signals.

Equation (19) illustrates that the conditioning of R
1/2
xx is given by

summing up the eigenvalues t(ν)

η
and its inverses (t(ν)

η
)−1 for all

frequencies ν and dimensions η. It is evident from (19) that the
condition number gets high if one or more of the eigenvalues t(ν)

η

are close to zero.
The condition number can be related to the normalized misalignment
µmin by introducing Eq. (19) into [2, Eq.(80)]

µmin = 10 log10

(

σ2
n

σ2
x

(1 − λ)2

‖h‖2
2

κ2
F{R

1

2
xx}
)

(20)

where σ2
n denotes the variance of the additive noise.

Due to the decoupling of the proposed multichannel TDAF approach



small and well-posed problems occur (no summations in Eq. (19)).
However, selective regularization is needed, as already mentioned
above.

4.2. Interpretation of eigenvalues

In order to gain more insight into the coefficients t(ν)

η
these are inter-

preted in the following. The covariance matrix Rpq expressing the
spatio-temporal couplings between the p-th and q-th input channel
can be expressed by rewriting (7) as sum

Rpq =
L−1∑

ν=0

s(ν)
pq f

(ν)(f (ν))H , (21)

where f
(ν) denotes a L × 1 vector containing the ν-th column of

the DFT matrix. Consequently, the elements of f
(ν) are given as

e−j2πlν/L with l = 0, 1, . . . , L − 1. The first column of the co-
variance matrix Rpq contains the temporal covariance coefficients
rpq(l) between the p-th and q-th input channel. Simplifying (21) to
the first column yields

rpq(l) =

L−1∑

ν=0

s(ν)
pq e−j2πlν/L . (22)

Hence, the spectral coefficients s(ν)
pq represent the temporal cou-

plings between the channels. The spatial couplings between the
input signals can be derived by rewriting (10) as sum

S
(ν) =

P∑

η=1

t(ν)

η
u

(ν)
η (u(ν)

η )H , (23)

where u
(ν)
η denotes the η-th column of U(ν). Hence, the coefficients

t(ν)

η
represent the spatio-temporal couplings between the channels.

Note, that the two step approach to decouple Rxx, presented in
this paper, allows to interpret the eigenvalues t(ν)

η
in terms of the

spatio-temporal correlation between the input signals. For highly
spatio-temporally correlated input signals most of the eigenvalues
are close to zero and consequently the covariance matrix Rxx is ill-
conditioned.

4.3. Link to generalized coherence

The magnitude-squared coherence |γ(ν)|2 is a frequently applied
measure for the dependencies between two signals. For instance
in [7] is was used to characterize the misalignment of stereophonic
AEC. The concept of the coherence has been generalized to the case
of more than two signals in [8]. In the following the link between
the generalized coherence and the condition number is illustrated.
The generalized coherence, in terms of the quantities introduced in
this paper, is given as

|γ(ν)|2 = 1 − det{S(ν)}
∏P

η=1 s
(ν)
ηη

= 1 −
P∏

η=1

t(ν)

η

s
(ν)
ηη

, (24)

where the second equality was derived from the properties of the
determinant. The generalized coherence |γ(ν)|2 is zero if all input
signals are mutually independent from each other and will approach
one if linear dependencies between the signals exist. It is assumed in
the following, that the inputs x are excited with unit variance white
(Gaussian) noise. Hence, that s(ν)

ηη = 1. Rearranging (24), taking the

natural logarithm on both sides and using the approximation ln x ≈
x − 1 results in

P∑

η=1

(t(ν)

η
)−1 ≈ P − ln(1 − |γ|2) . (25)

Introducing (25) into (19) together with σ2
x = LP for the assumed

excitation yields the desired relation as

κ2
F{R

1

2
xx} ≈ L2P 2 − L2P ln(1 − |γ|2) . (26)

Equation (26) states that κ2
F assumes its minimum value L2P 2 if

|γ(ν)|2 = 0, hence when the input signals are independent from
each other. Its also evident from (26) that κ2

F increases towards in-
finity when the generalized coherence increases towards one. Both
extrema are in conjunction with Eq. (19) for such conditions. This
indicates that the assumptions made to derive (26) are reasonable.

5. CONCLUSION

We presented a multichannel TDAF approach that is based upon
a two step decoupling of the input covariance matrix using uni-
tary transformations. These transformations depend on the spatio-
temporal couplings of the far-end microphone signals. Since the
room is assumed to be a linear slowly time-variant system, a Fourier
transformation serves well for temporal decoupling. For the spatial
decoupling a SVD has been applied. For an efficient implementa-
tion the spatial transformation could be applied in the multichannel
FDAF framework. As a side effect, the proposed two step approach
provides interesting insights into the ill-conditioning of the problem
for the multichannel case and potential countermeasures.
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