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ABSTRACT

Multichannel adaptive filtering is subject to specific pehb
emerging from spatio-temporal couplings in the input sigraf
the adaptive filter. Transform-domain adaptive filterin@®@F) de-
couples the input signal of the adaptive filter by a suitalblgsen
transformation. In a previous paper, the authors havedoted a
two-stage approach to multichannel TDAF. However, the aggin
presented there is based on a sample-by-sample update fif the
ter coefficients. In this paper we present a more practicatksl
based formulation of multichannel TDAF that is construchesn
a combination of frequency-domain adaptive filtering fanperal
decoupling and an unitary transform for spatial decoupling

1. INTRODUCTION

Telecommunication systems with more than one acoustisnnan
sion channel are being developed and increasingly usededys-
tems aim at providing additional spatial auditory cues ®listener
in contrast to the single channel systems frequently usétkifast
decades. The spatial cues increase the naturalness ofrtimewso-
cation and can facilitate, for instance, the recognitioap#akers in
a dialogue by their spatial position.

Acoustic echo cancelation (AEC) is required for full-duptom-
munication in a hands-free communication scenario. Thédicgpp
tion of AEC to such a scenario is illustrated in Fig. 1. Thelgda
AEC is to cancel the acoustic echo for the far-end, introduzg
the couplings between the loudspeaker(s) and microphpatiise
near-end. In the block diagram of Fig. 1, the echo producethéy
acoustic couplings between tRdoudspeakers and the microphone
in the near-end room is canceled for the far-end by subtigdtie

estimatey(n) of the microphone signal from the actual microphone

signaly(n). The signaly(n) is derived by filtering the loudspeaker
signalsxp(n) with finite-impulse response (FIR) filters that model
the acoustic pathis,(n)
The estimation of the acoustic pathg(n) represents a multichan-
nel identification problem. It is well known that this idefitation
problem is typically ill-conditioned for the multichannedse if the
far-end signals exhibit spatio-temporal correlations [1]

from the loudspeakers to the microphones.

of the input (loudspeaker signal) covariance matrix. Thet fap-
proach is applied in frequency-domain adaptive filterin@AIF),
while the second one is applied in transform-domain adajfiier-
ing (TDAF).

The authors have introduced a two-stage approach to matiet
TDAF in [2]. However, the approach presented there was based
a sample-by-sample update of the filter coefficients. Bloaged
adaptation algorithms are typically computationally lessnplex
and therefore favorable. In this paper we present a bloskdéor-
mulation of multichannel TDAF that is constructed from a eom
bination of FDAF for temporal decoupling and TDAF for sphtia
decoupling.

We proceed as follows: The next section will introduce thedfar
mental problem of multichannel system identification. Thik be
followed by a brief review of TDAF and FDAF before we derive
the block-based TDAF algorithm. Some results computed thith
proposed algorithm will be shown before concluding the pape

2. MULTICHANNEL SYSTEM IDENTIFICATION

The estimation of the acoustic pathg(n) for p=1,2,...,P repre-
sents a multichannel identification problem. The eg(®) is given
as

e(n) = 1)
p=1
where
flp = [ﬁp,o,ﬁp,l,A.A,ﬁp,L,ﬂT R (2)
Xp(n): [Xp(n)vxp(nfl)v"'vxp(nfL‘l’l)}T ) (3)

with hp| denoting the-th coefficient of thep-th channell the filter
length andh the time instant. Under the assumption of minimizing
the mean-square error (MSE) the filter coefficients can beddy
solving the multichannel normal equation [1]

:R,x)(l'lzr)(y7 (4)

In advanced adaptation schemes, at least two fundamental aphere thePL x 1 vectorh of estimated filter coefficients is given

proaches exist to cope with the far-end correlations: (Xode
pling of the convolution in the near-end room and (2) deciogpl

far-end -enfl
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Figure 1: Block diagram of multichannel acoustic echo chatim.
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ash = [h],h],...,h}]T. The matrixRx denotes the covariance
matrix of the input signals(n) andryy the covariance vector be-
tween the inpuk(n) and the microphone signg{n). ThePL x LP
covariance matriRyy is defined as

Ry(n) = &{x(m)x" ()}, ©)
where &{-} denotes a suitable approximation of the expectation
operator and thePL x 1 vector x of input signals is given as
x(n) = [x],xJ,...,x}]T. ThePL x 1 covariance vectoryy(n) =
&{x(n)y(n)}. The covariance matriRyxx is composed fronk x L
sub-matrices that are given &pq = &{xp(n)x§(n)} for p,q =
1,2,...,P. Typically, these are assumed to be Toeplitz matrices.
The generalization to multiple microphones and consedpent
multiple-input multiple-output (MIMO) systems in the neamd
room is straightforward. It can be shown that the resultiog n
mal equation for the MIMO case can be decomposed into a series
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of independent multiple-input single-output (MISO) notregua-
tions [1] for each microphone channel. Hence, the condiideraf
a MISO system in the near-end room is sufficient in the coraéxt
this work.

The solution of the normal equation (4) is subject to nunatpcob-
lems when the covariance matiyy is ill-conditioned. It can be
shown that this is the case when spatio-temporal corrakibxist
between the loudspeaker signgjgn).

3. ATWO-STAGE APPROACH TO MULTICHANNEL
TDAF

Transform-domain adaptive filtering (TDAF) is a techniqimatt
performs the filter adaptation in a transform domain. In thesal
case, the far-end signals will be decorrelated by a suitabbsen
transformation. The ideal transformation can be deduazu the

equation

T, UMA[F'h=U[A[Fryy, 9

t
Zxy

1=

where& andgxy denote the transformed vector of filter coefficients

h and the transformed covariance vectgy, respectively. Since
T, is diagonal, the normal equation (4) has been decomposed by
the transformations into a series of scalar equations.

The solution of the normal equation (9) involves the invamsof
the diagonal matri@xx containing the spatio-temporal eigenvalues
of Rxx. If one or more of these are zero or close to zero this will
be subject to numerical problems. It was shown in [2] that¢he
eigenvalues are linked to the spatio-temporal correlatinthe far-
end signals and that strong correlations lead to eigenvahat are

covariance matrilRx(n) and is data-dependent in general. TDAF (close to) zero. One benefit of TDAF is that a regularizatian be

has originally been introduced for the single channel c8%e Ih

a previous paper [2] we have proposed multichannel TDAFedas
on a two-step decoupling of the covariance matrix. The aggrds
briefly reviewed in the following.

3.1 Spatio-temporal decoupling

The spatio-temporal decoupling consists of two steps:eihpboral
decoupling using a discrete Fourier transform (DFT) basaast
formation and (2) a spatial decoupling using a unitary tiams.
Assuming stationary signalg (n) and the correlation method to es-
timate the covariance matrix, the sub-matri€tg, exhibit Toeplitz
structure [4]. These assumptions hold well for typical aign For
large block lengthsl( — ) the matricesRpgq become equivalent
to circulant matrices [5]. Circulant matrices can be diaji@med by
the DFT

(6)

whereF denotes &L x LP block-diagonal matrix whose diago-
nal blocks are composed froinx L DFT matricesF'| . Frequency
domain quantities are underlined. The elements of the (abrm
ized) DFT matricesF| are given asfym = 1/v/L - e 1ZMWL for
nm=0,1,...,L—1. The block-matrixS,, is composed from the
L x L diagonal matrices

Ry = FS,F |

§pq = dlag{§§3%)a§§)l) s 7§E)I(_Z]71)} )

@)

where the elemengg,‘a) forv=0,1,...,L—1are given by the DFT
of the first column ofR pg. The frequency bin is denoted as
In order to achieve further spatial decoupling, the ma$ixhas to
be reordered such that all spatial couplings for one frequém
are combined into submatric@é"). Formally, this can be reached
by a suitably chosen permutation matf . The submatriceS(")
can then be diagonalized by application of the spectralrdmo
Combining all described steps, the covariance md&jx can be
expressed as

R =FA U T UA[F" @)
in terms of the diagonal matri,  which is composed from the
spatio-temporal eigenvalues ®y. These eigenvalues can be
linked to the spatio-temporal correlation coefficients lé input
signalsxp(n) [2].

performed spatially and temporally frequency-bin selecti

The derived transformations have been applied straighéfatly to
the recursive-least squares (RLS) algorithm in [2]. Theniga-
tion is based on a sample-by-sample update of the filter coeifs.
However, for a practical implementation block-based atpors are
favorable. The presented two-step approach to multicHarib&F
allows the utilization of known frequency domain technigji&e
frequency domain adaptive filtering (FDAF) for the tempadat
coupling. After a brief review of generalized FDAF in the tex
section, a combination of TDAF and FDAF will be developed in
Section 5.

4. FREQUENCY-DOMAIN ADAPTIVE FILTERING

This section presents a brief review of generalized FDAF7[6,
FDAF is essentially based on a block formulation of the ident
cation problem. This block formulation is derived by combm
L consecutive samples into blocks, formulating the erronaligl)
in terms of blocks and minimizing the error. For this purpase
convolution operation in (1) is reformulated in terms of atrnxa
operation, where the input signals are combined into a raith
Toeplitz structure. A Toeplitz matrix can be transformetbia cir-
culant matrix by doubling its size. This concept is a fundatak
building block of FDAF where the circulant matrix is then gia
nalized by the DFT. This results in an overlap save formotatf
the convolution by incorporating window functions.

The concept of generalized multichannel FDAF is closelkduh
to TDAF in the sense that it also aims at temporal decoupling.
is well known that the Fourier transformation diagonalitiesar
time-shift invariant systems. FDAF employs the DFT for temgb
decoupling of the near-end system. It can be shown [6] that th
leads also to an approximate temporal decoupling of therzonee
matrix Ryx. This is due to fact that the DFT only approximately
decouples the covariance matrix for the finite blocksizeracpcal
implementations [5].

4.1 Algorithm

The time-domain block error signalm) for a block length ofL
samples is defined as
e(m) =[e(mL),e(mL+1),....e(mL+L—1)]", (10

wherem denotes the block index. The microphone signgh) is
defined in a similar fashion agm). In order to derive an algorithm

TheLP x PL matrixU, denotes a block-diagonal matrix composed that requires only DFTSs of size2the error and microphone signals

fromtheP x P submatriceg(‘” constructed from the singular vec-

tors of S(V). Note, that the desired decoupling of the covariance

matrix has been achieved by a set of suitably chosen unitang-t
forms. This favorable property is beneficial for mathenadtiear-
rangements in the algorithm.

3.2 Multichannel TDAF

Introducing Eg. (8) into the normal equation (4) and exjhgithe
unitarity of the transform matrices yields the transfornmedmal

are zero padded before transformation into the frequenoyado

e (m=Fy [lebeT(m)]T ;

and similarly for the microphone signal. The loudspeakgnais in
the frequency domain are given as

Xp(m) = diag{Fa [xp(mL—L),....xp(mL+L—1)]T}, (12a)
X(m) = [Xy(m),...,. Xp(m)] . (12b)

(11)
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The generic FDAF algorithm for MISO systems can then be sumb5.1 Algorithm

marized as follows [7]

S(m) =A8(m—1)+ (1- 1) X" (M)G1X(m) (13a)
K(m) = (1-2)S~ (m)X"(m), (13b)
€'(m) =y'(m) - GoX(mh'(m-1), (13c)
h'(m) =h'(m-1) + GzK(m)e' (m), (13d)

whereA denotes the forgetting factor ariﬂ(m) the zero padded
vector of estimated filter coefficients which is defined as

b'(m) =G%p, ph' (M), (14)

As for the TDAF approach introduced in Section 3, a reordgrin
of the covariance matrix is desirable that combines thealpaiu-
plings for one frequency bin into sub-matrices. This candieeved

in the framework of FDAF by post multiplying the frequency-do
main signal matrixX(m) by a 2.P x 2LP permutation matrix

A =15, (17

composed fronP x 2L submatrices foi = 1,...,2L, j=1,...,P
where 1j; denotes a submatrix which contains a one at position
(i,j) and zeros at all other positions. The reordering of the sig-
nal matrix X(m) results in a reordering of the covariance matrix.
The reordered covariance matrix is a block diagonal matix-c
posed fromP x P matrices representing the spatial couplings for

whereGgfprP denotes a window matrix that performs the zeroone of the 2 frequency bins. As for the sample-by-sample TDAF

padding. Itis defined as follows
G3puip = Bdiag{G3 (-, G3 } (15a)
G2 L =Fa [T, 00 F L. (15b)

Inthe FDAF algorithm the finite block length is explicitly@munted
for by the constraint matrice& 1, G, and G3. These are defined
as

G1 = G2 = F2 Bdiag{Op ., ILx }Fy (16a)
G3=Bdiag{G3 5 ,...,G¥ 5}, (16b)
G3xa = FaBdiag{TL .1, 0L }F5 " (16¢)

concept this allows a bin-wise eigenvalue decompositioendd,
the concepts outlined in Section 3 can be introduced inté-bwF
algorithm.

Introducing the eigenvalue decomposition of the covagamatrix

S(m) = AUM)T(mU" (mAT (18)

for the block indexnandm— 1 into (13a) together witls; =1/2,
and utilizing the unitarity of the spatial transformatithyields

T(m) =AU (MU (m-1)T(m-—1)U" (m-1)U(m)+

SA-DX mX(m), (9)

The frequency domain algorithm given by (13) provides the op\where

timal solution of the normal equation (4). The formulatioanc
be extended straightforwardly to include partitioned ifspure-
sponses [6]. Partitioning improves the performance in tmeext of
nonstationary signals and time-varying near-end systeaisé al-
lows to improve the delay in a practical implementation. et L
partitions, this algorithm is equivalent to the time domRilbS al-
gorithm.

Based on the generic FDAF algorithm a number of special casds
approximations can be derived that lead to most known dlyos
and efficient algorithms [6, 7]. One frequently applied apjma-
tion, that is relevant in the context of this paper, will bealissed in
the following.

4.2 Approximations
As discussed for TDAF in Section 3.1, the submatriRgs of Rxx

X(m) = X(mAU(m) (20)

denotes the matrix of transformed far-end signals. Theipiak-
tion of the reordered signal matrX (m) A by the singular matrix of
U(m) can be interpreted as filtering the far-end signals, wheze th
MIMO filter is given by the singular vectors &(m). Hence, the
desired decoupling can be achieved by filtering the far-égubss.
The update equation (19) for the transformed covarianceixnat
T(m) contains combinations of singular matrices from the actual
and the previous block index. This combination can be imé&teul

as a transformation &f(m— 1) from the previous eigenspace to the
actual one. This transformation is required for an exachfdation
since the spatial eigenvectors are not constant from orok bbathe
next one in general.

Introducing (18) and (20) into Eq. (13b) results in the faliog

are assumed to be Toeplitz. The same holds when doubling tH&!ation for the Kalman gain

block-size, as performed in FDAF. However, the DFT only diag
nalizes Toeplitz matrices in the limiting case for— c. The re-
sulting submatrices d8(m) will contain off-diagonal elements in
practical implementations with finite block lengths. As aulg the
frequency domain covariance mati$(m) is not exactly (block-
wise) diagonal in general. Hence, computing the inverse &)
results in a high computational complexity.

Approximating the constraint matri&, by G1 =1/2 results in a

blockwise diagonal structure &f(m). It has been shown in [6] that

this approximation provides good results for sufficiendisgle block
lengthsL.

5. BLOCK-BASED MULTICHANNEL TDAF
In order to derive a block-based algorithm for multichanfiBAF

both block-based FDAF and the concept of TDAF are combine

K(m) =(1-2)T *(mXx"(m), (21)

where
K(m) = U (mATK(m) 22)

denotes the transformed Kalman gain. Furthermore introduc
ing (20) into the error signal of FDAF (13c) reads

¢(m) =y'(m) — GoX(MU" (mUM-1h' (m-1), (23)

where the transformed filter coefficients are defined as

B'(m-1)=U"m-1)ATh' (m-1). (24)

drinally introducing (24) and (22) into (13d) yields the dasént

in the following. The two stage approach to TDAF presented in/Pdate as

Section 3 separates the temporal decoupling from the $phia
coupling. Hence, FDAF can be utilized for temporal decoupli
combined with the concept of spatial decoupling from TDA&t F
this purpose the eigenvalue decomposition of TDAF is inioedl
into (13). It will be assumed in the following th&%; =1/2. The
generalization is straightforward as will be discusseerlat

B'(m) = UM (mU(m- 1)’ (m—1)+ GsK(m)e/(m),  (25)
where the constrairs is given as

G3=U"(mATG3AU(M). (26)
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The derived block-based TDAF algorithm will be summarized i

the following. Equation (19) is in principle only requiredrfthe
derivation, since the transformed covariance mal{r) is directly
given by the eigenvalue decomposition. The following eipunest
constitute the TDAF algorithm

S(m) :Ag(m—1)+%(1—)«)§” (mX(m), (27a)

T(m) = U™ (M) ATS(m)AU(m) (27b)

K(m) = (1-2)TH(m)X" (m) (27¢)

€ (m) =y(m - G2X(mGuh (m-1) (27d)

h'(m) = Guh'(m- 1) + GzK(m)e'(m) , (27e)
where

Gy =U"(mU(m-1). (28)

The algorithm defined by Eq. (27) constitutes a combinaticihe

concepts of FDAF and TDAF. The decoupling of the covarianae m

trix is performed in a two-step approach. The DFT is useddon-t
poral decoupling and an eigenvalue decomposition for apdé-
coupling. The temporal decoupling is performed in a verycifit

manner by applying FDAF. The required DFTs can be realizéd ef

ciently by the fast Fourier transform (FFT). For an exactispde-
coupling, an eigenvalue decomposition has to be perforiHed:-
ever, the derived formulation allows also to use a generiv®l
filtering of the far-end signals with the potential of findiefficient
approximations of the exact solution.

The following section will briefly discuss variants of thesetine
algorithm.

5.2 Variants

The block-based TDAF algorithm (27) requires to computectiie
variance matrixS(m) in order to derive the transformatidgi(m) of
the far-end signals. An alternative is to derive the tramsédgion di-

x1(n)

concatenate
two blocks

xp(N)

concatenate
two blocks

Xy (m)

PSD estim. &
EVD

Xp(m)

zero block
e(n)

Figure 2: Block diagram of TDAF algorithm (adapted from [7])

one.
In theory, the number of eigenvalues for one frequency biickwh
are not zero is given by the number of independent activecssur
in the far-end room. The other eigenvalues are zero or intipeac
close to zero. Hence, these eigenvalues and the associgésd e
channels can be neglected for the adaptation. This techigcqlso
known as reduced rank TDAF. The application of a so-calléd th
eigenvalue decomposition computing only some of the e@jers

rectly from X" (m)X (m) and to formulate a recursive update of the provides the potential to lower the computational comppjexi
decoupled covariance matriR(m). The eigenvalue decomposition The derivation of the block-based TDAF algorithm is so fasémi

of X" (m)X(m) is given as

X" (mX(m) = AUmMI(mU" (mAT. (29)
Hence, we can define the transformed far-end signals sitoikie
derivation of TDAF, as given in the previous section by (Zlhese
transformed signals can then be introduced into the desivaif
FDAF as given in [7]. The resulting transformed covarianerin
is given as

T(m=AGuTM-1Gf +(1-NIm),  (30)
which can be combined straightforwardly with (27c)-(27elpw-
ever, the matribGy is different in this case

Gy = U™ (M ATG3lp, pBUL (M) x
x U (m—1)BT(G3%,  p)TAUM-1), (31)

where the permutation matriB is defined in [7]. The constraint

matrix Gy for both variants of the algorithm considers the transi-

tion of the eigenspaces &(m) over time. The matrixGy takes
the spatial changes in the far-end signals into accounts iShdue
to the two-step approach to spatio-temporal decouplindneffar-
end signals applied in the presented TDAF approach. Foradigat
(quasi) stationary signals (i.J(m) ~ U(m— 1)) this matrix can
be approximated quite well b§&y = I for both variants. Note, that
under this approximation both variants of the block-bas€irF
algorithm are equivalent. The approximation@y is also reason-
able for situations where the forgetting facfoiis chosen close to

on the assumption that the constraint is approximated by, =
I/2. This assumption allows the bin-wise computation of tigeei
value decomposition. However, the TDAF framework is alspliap
cable when this constraint is not approximated. The simyaetors
and values of the reordered covariance matrix have then tortoe
puted by considering the entire.R x 2LP matrix, which may be
computationally very demanding in practice.

5.3 Implementation

Some of the matrices in the formulation (27) of the TDAF algo-
rithm exhibit sparse or diagonal structures giving the pt&d for
optimization in a practical implementation. Figure 2 ithades a
block-diagram of the algorithm exploiting these structurBue to
the frequency-domain formulation provided by FDAF all at@ns
can be performed efficiently in a bin-wise (scalar) fashibtow-
ever, the matrice®J(m) and the constraint&s andGy constitute
MIMO systems. If the constraint&s and Gy are approximated
by identity matrices, then the multichannel identificatimoblem
is reduced td® decoupled SISO identification problems within the
transform domain.

6. RESULTS

A typical multichannel AEC application scenario will be ciatered
in the following to illustrate the properties of the deveddpT DAF
algorithm.

The simulated geometrical setup consists of a near-end waitim
size 6x 6 x 3 meters containing two loudspeakePs=£ 2) and one
microphone. The near-end room was acoustically modelethdy t
image source method with an acoustic reflection factor aiveies

of p =0.9. The loudspeakers and the microphone are located at a
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Figure 3: Simulation results for the proposed multichaifi@AF
algorithm for two different regularization strategies.

height of 15 meters. The position of the loudspeakerg2i8, 5] m
and[3.2,5] m, and of the microphon®, 2] m.

The signal of a male speaker was fed equally to both loudspeak

ers (phantom source stationary in center). The loudspesiger
nals were pre-processed by a nonlinearity [1] in order teedop
the non-uniqueness problem. Noise with a level of approtéiya

—50 dB with respect to the echo was added to the microphone sig-

nals, in order to simulate microphone and other noise sswatthe
near-end.

The algorithm was implemented in MATLAB, as depicted by Rig.
The filter length was chosen &s= 4096 at a sampling rate of
fs = 44.1 kHz. In order to illustrate the effect of selective regu-
larization in the eigenspace, two regularization straediave been
implemented: (1) both spatial and temporal frequency-biactive
regularization and (2) only temporal frequency-bin sékectegu-
larization. The latter shows a similar performance as agsttior-
ward implementation of FDAF. The dynamic regularizatiohesoe
introduced in [6] has been used for both strategies.

Figure 3(a) shows the echo return loss enhancement (ERLE) fc[6]

the simulated scenario. It can be seen that the algorithivecges
fast and provides a good amount of echo attenuation (in d&) th
is bounded by the near-end noise. The spatio-temporal érexyd
bin selective regularization shows better results thartehgporal
frequency-bin regularization. Figure 3(b) shows the ndized
misalignment. Again the spatio-temporal frequency-bilectese
regularization performs better. Note, that the proposeAHR Blgo-
rithm, unlike multichannel FDAF, provides inherently thesgibil-

ity for this beneficial regularization strategy.

7. CONCLUSION

This paper presents a block-based reformulation of the keabyp
sample multichannel TDAF approach introduced in [2]. lt®tw
stage approach to spatio-temporal decoupling has beeaitin
order to perform the temporal decoupling efficiently by tHaAF
algorithm in combination with an eigenvalue decompositimoope
for the spatial couplings. In contrast to a sample-by-sanmyg-
date the presented block-based approach benefits from tinguco
tational savings of the FDAF algorithm. The results show tha
resulting algorithm performs well in a typical multichaheEC
scenario. One benefit of the proposed adaptation schemkingor
in the eigenspace of the far-end signal covariance masrtkg pos-
sibility of selective regularization in that eigenspacbebenefit of
this regularization was demonstrated in Section 6. Thekbbased
TDAF algorithm is formally equivalent to wave-domain adept
filtering (WDAF) developed by the authors in [7]. This linkgsite
interesting since WDAF is based on decoupling of the nedrsgs-
tem by a singular value decomposition (SVD). The only fordi&l
ference between the TDAF and the WDAF algorithm, besides the
MISO/MIMO formulation, is the matrixGy which accounts for
the change of the eigenspace over time. Since for the dierivaf
WDAF (like for FDAF) it is assumed that the near-end room a&cou
tics is time-invariant this matrix does not show up thereliexty.
The formulations of WDAF and multichannel TDAF, as presdnte
by the authors, are based on transforming (filtering) thefeat sig-
nals in order to overcome fundamental problems of the nhatie
nel identification problem. The transformations are linkedhe
eigenspace of the near-end system or the covariance méttve o
far-end signals. The formulations of the algorithms are alspli-
cable for generic MIMO filters. This opens up the potentiafitol
efficient approximations of these transformations. Thecbesn-
cept of TDAF also has a strong relation to blind source sejosra
(BSS). The BSS algorithms based on second-order statisfits
find a demixing system that diagonalizes the covarianceixnaftr
the demixed signals. The transformati®ihcan also be interpreted
as demixing system in this context, since the goal is to pen-
dependent signals to the adaptive filters.

In the future, further work is planned on the detailed arialg§the
properties of the presented multichannel TDAF algorithm.
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